Linear Operators with Compact Supports, Probability Measures and Milyutin Maps

نویسندگان

  • VESKO VALOV
  • V. Valov
چکیده

The notion of a regular operator with compact supports between function spaces is introduced. On that base we obtain a characterization of absolute extensors for 0-dimensional spaces in terms of regular extension operators having compact supports. Milyutin maps are also considered and it is established that some topological properties, like paracompactness, metrizability and k-metrizability, are preserved under Milyutin maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotent Probability Measures, I

The set of all idempotent probability measures (Maslov measures) on a compact Hausdorff space endowed with the weak* topology determines is functorial on the category Comp of compact Hausdorff spaces. We prove that the obtained functor is normal in the sense of E. Shchepin. Also, this functor is the functorial part of a monad on Comp. We prove that the idempotent probability measure monad conta...

متن کامل

Probability Measures and Milyutin Maps between Metric Spaces

We prove that the functor P̂ of Radon probability measures transforms any open map between completely metrizable spaces into a soft map. This result is applied to establish some properties of Milyutin maps between completely metrizable space.

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Topology Proceedings

We prove a counterpart of the Michael selection theorem for max-plus compact convex sets. The proof is based on the properties of Milyutin map of the spaces of idempotent probability measures.

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009